Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29.325
1.
Nat Commun ; 15(1): 3954, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729958

Defense-associated sirtuin 2 (DSR2) systems are widely distributed across prokaryotic genomes, providing robust protection against phage infection. DSR2 recognizes phage tail tube proteins and induces abortive infection by depleting intracellular NAD+, a process that is counteracted by another phage-encoded protein, DSR Anti Defense 1 (DSAD1). Here, we present cryo-EM structures of Bacillus subtilis DSR2 in its apo, Tube-bound, and DSAD1-bound states. DSR2 assembles into an elongated tetramer, with four NADase catalytic modules clustered in the center and the regulatory-sensing modules distributed at four distal corners. Interestingly, monomeric Tube protein, rather than its oligomeric states, docks at each corner of the DSR2 tetramer to form a 4:4 DSR2-Tube assembly, which is essential for DSR2 NADase activity. DSAD1 competes with Tube for binding to DSR2 by occupying an overlapping region, thereby inhibiting DSR2 immunity. Thus, our results provide important insights into the assembly, activation and inhibition of the DSR2 anti-phage defense system.


Bacillus subtilis , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Bacillus subtilis/immunology , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Immune Evasion , Sirtuins/metabolism , Sirtuins/genetics , Viral Proteins/metabolism , Viral Proteins/immunology , Viral Proteins/chemistry , Viral Proteins/genetics , Protein Binding , Models, Molecular , NAD/metabolism
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731898

The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.


Aging , NAD , Ovary , Humans , Female , NAD/metabolism , Aging/metabolism , Aging/physiology , Ovary/metabolism , Animals , Sirtuins/metabolism , Energy Metabolism , Fertility/physiology , Reproduction/physiology
3.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Article En | MEDLINE | ID: mdl-38735943

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Glucose , Mesenchymal Stem Cells , Mitochondria , NAD , Osteogenesis , Sirtuin 1 , Mesenchymal Stem Cells/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Osteogenesis/physiology , Mice , Humans , Animals , Mitochondria/metabolism , Glucose/metabolism , NAD/metabolism , Cell Differentiation
4.
Physiol Plant ; 176(3): e14340, 2024.
Article En | MEDLINE | ID: mdl-38741259

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Arabidopsis , Cysteine , Malate Dehydrogenase , NAD , Oxidation-Reduction , Plastids , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Cysteine/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Plastids/metabolism , Plastids/enzymology , NAD/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
5.
Anal Chim Acta ; 1303: 342523, 2024 May 15.
Article En | MEDLINE | ID: mdl-38609265

BACKGROUND: l-lactate detection is important for not only assessing exercise intensity, optimizing training regimens, and identifying the lactate threshold in athletes, but also for diagnosing conditions like L-lactateosis, monitoring tissue hypoxia, and guiding critical care decisions. Moreover, l-lactate has been utilized as a biomarker to represent the state of human health. However, the sensitivity of the present l-lactate detection technique is inadequate. RESULTS: Here, we reported a sensitive ratiometric fluorescent probe for l-lactate detection based on platinum octaethylporphyrin (PtOEP) doped semiconducting polymer dots (Pdots-Pt) with enzymatic cascade reaction. With the help of an enzyme cascade reaction, the l-lactate was continuously oxidized to pyruvic and then reduced back to l-lactate for the next cycle. During this process, oxygen and NADH were continuously consumed, which increased the red fluorescence of Pdots-Pt that responded to the changes of oxygen concentration and decreased the blue fluorescence of NADH at the same time. By comparing the fluorescence intensities at these two different wavelengths, the concentration of l-lactate was accurately measured. With the optimal conditions, the probes showed two linear detection ranges from 0.5 nM to 5.0 µM and 5.0 µM-50.0 µM for l-lactate detection. The limit of detection was calculated to be 0.18 nM by 3σ/slope method. Finally, the method shows good detection performance of l-lactate in both bovine serum and artificial serum samples, indicating its potential usage for the selective analysis of l-lactate for health monitoring and disease diagnosis. SIGNIFICANCE: The successful application of the sensing system in the complex biological sample (bovine serum and artificial serum samples) demonstrated that this method could be used for sensitive l-lactate detection in practical clinical applications. This detection system provided an extremely low detection limit, which was several orders of magnitude lower than methods proposed in other literatures.


Lactic Acid , NAD , Humans , Athletes , Organic Chemicals , Oxygen , Polymers
6.
Chem Biol Interact ; 394: 110992, 2024 May 01.
Article En | MEDLINE | ID: mdl-38579923

Histidine residues 44 and 48 in yeast alcohol dehydrogenase (ADH) bind to the coenzymes NAD(H) and contribute to catalysis. The individual H44R and H48Q substitutions alter the kinetics and pH dependencies, and now the roles of other ionizable groups in the enzyme were studied in the doubly substituted H44R/H48Q ADH. The substitutions make the enzyme more resistant to inactivation by diethyl pyrocarbonate, modestly improve affinity for coenzymes, and substantially decrease catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The pH dependencies for several kinetic parameters are shifted from pK values for wild-type ADH of 7.3-8.1 to values for H44R/H48Q ADH of 8.0-9.6, and are assigned to the water or alcohol bound to the catalytic zinc. It appears that the rate of binding of NAD+ is electrostatically favored with zinc-hydroxide whereas binding of NADH is faster with neutral zinc-water. The pH dependencies of catalytic efficiencies (V/EtKm) for ethanol oxidation and acetaldehyde reduction are similarly controlled by deprotonation and protonation, respectively. The substitutions make an enzyme that resembles the homologous horse liver H51Q ADH, which has Arg-47 and Gln-51 and exhibits similar pK values. In the wild-type ADHs, it appears that His-48 (or His-51) in the proton relay systems linked to the catalytic zinc ligands modulate catalytic efficiencies.


Alcohol Dehydrogenase , Catalytic Domain , Histidine , Saccharomyces cerevisiae , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/chemistry , Hydrogen-Ion Concentration , Histidine/metabolism , Histidine/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/enzymology , Kinetics , Ethanol/metabolism , Acetaldehyde/metabolism , Acetaldehyde/chemistry , Oxidation-Reduction , Amino Acid Substitution , Diethyl Pyrocarbonate/metabolism , Diethyl Pyrocarbonate/chemistry , NAD/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Zinc/metabolism , Zinc/chemistry
7.
Theranostics ; 14(6): 2622-2636, 2024.
Article En | MEDLINE | ID: mdl-38646657

Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.


Busulfan , Ferroptosis , NAD , Sirtuin 2 , Spermatogenesis , Animals , Busulfan/pharmacology , Male , Spermatogenesis/drug effects , Mice , NAD/metabolism , Ferroptosis/drug effects , Sirtuin 2/metabolism , Sirtuin 2/genetics , Disease Models, Animal , Testis/metabolism , Testis/drug effects , Azoospermia/drug therapy , Azoospermia/metabolism , Azoospermia/chemically induced
8.
FEMS Yeast Res ; 242024 Jan 09.
Article En | MEDLINE | ID: mdl-38637306

Anaerobic alcoholic fermentation, particularly in high-sugar environments, presents metabolic challenges for yeasts. Crabtree-positive yeasts, including Saccharomyces cerevisiae, prefer fermentation even in the presence of oxygen. These yeasts rely on internal NAD+ recycling and extracellular assimilation of its precursor, nicotinic acid (vitamin B3), rather than de novo NAD+ production. Surprisingly, nicotinic acid assimilation is poorly characterized, even in S. cerevisiae. This study elucidated the timing of nicotinic acid uptake during grape juice-like fermentation and its impact on NAD(H) levels, the NAD+/NADH ratio, and metabolites produced. Complete uptake of extracellular nicotinic acid occurred premid-exponential phase, thereafter small amounts of vitamin B3 were exported back into the medium. Suboptimal levels of nicotinic acid were correlated with slower fermentation and reduced biomass, disrupting redox balance and impeding NAD+ regeneration, thereby affecting metabolite production. Metabolic outcomes varied with nicotinic acid concentrations, linking NAD+ availability to fermentation efficiency. A model was proposed encompassing rapid nicotinic acid uptake, accumulation during cell proliferation, and recycling with limited vitamin B3 export. This research enhances the understanding of nicotinic acid uptake dynamics during grape juice-like fermentation. These insights contribute to advancing yeast metabolism research and have profound implications for the enhancement of biotechnological practices and the wine-making industry.


Fermentation , NAD , Niacin , Oxidation-Reduction , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Niacin/metabolism , NAD/metabolism , Ethanol/metabolism , Coenzymes/metabolism
9.
Proc Natl Acad Sci U S A ; 121(17): e2320934121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38630726

Cullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined. Here, we report that hepatocyte Cul3 knockout results in rapid resolution of steatosis in obese mice. However, the remarkable resistance of hepatocyte Cul3 knockout mice to developing steatosis does not lead to overall metabolic improvement but causes systemic metabolic disturbances. Liver transcriptomics analysis identifies that CRL3 inactivation causes persistent activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant defense pathway, which also reprograms the lipid transcriptional network to prevent TG storage. Furthermore, global metabolomics reveals that NRF2 activation induces numerous NAD+-consuming aldehyde dehydrogenases to increase the cellular NADH/NAD+ ratio, a redox imbalance termed NADH reductive stress that inhibits the glycolysis-citrate-lipogenesis axis in Cul3 knockout livers. As a result, this NRF2-induced cellular lipid storage defect promotes hepatic ceramide accumulation, elevates circulating fatty acids, and worsens systemic insulin resistance in a vicious cycle. Hepatic lipid accumulation is restored, and liver injury and hyperglycemia are attenuated when NRF2 activation and NADH reductive stress are abolished in hepatocyte Cul3/Nrf2 double-knockout mice. The resistance to hepatic steatosis, hyperglycemia, and NADH reductive stress are observed in hepatocyte Keap1 knockout mice with NRF2 activation. In summary, our study defines a critical role of CRL3 in hepatic metabolic regulation and demonstrates that the CRL3 downstream NRF2 overactivation causes hepatic metabolic maladaptation to obesity and insulin resistance.


Fatty Liver , Hyperglycemia , Insulin Resistance , Animals , Mice , Ubiquitin-Protein Ligases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NAD/metabolism , Cullin Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Mice, Knockout , Lipids
10.
FEMS Yeast Res ; 242024 Jan 09.
Article En | MEDLINE | ID: mdl-38587863

Previously, we reported an engineered Saccharomyces cerevisiae CEN.PK113-1A derivative able to produce succinic acid (SA) from glycerol with net CO2 fixation. Apart from an engineered glycerol utilization pathway that generates NADH, the strain was equipped with the NADH-dependent reductive branch of the TCA cycle (rTCA) and a heterologous SA exporter. However, the results indicated that a significant amount of carbon still entered the CO2-releasing oxidative TCA cycle. The current study aimed to tune down the flux through the oxidative TCA cycle by targeting the mitochondrial uptake of pyruvate and cytosolic intermediates of the rTCA pathway, as well as the succinate dehydrogenase complex. Thus, we tested the effects of deletions of MPC1, MPC3, OAC1, DIC1, SFC1, and SDH1 on SA production. The highest improvement was achieved by the combined deletion of MPC3 and SDH1. The respective strain produced up to 45.5 g/L of SA, reached a maximum SA yield of 0.66 gSA/gglycerol, and accumulated the lowest amounts of byproducts when cultivated in shake-flasks. Based on the obtained data, we consider a further reduction of mitochondrial import of pyruvate and rTCA intermediates highly attractive. Moreover, the approaches presented in the current study might also be valuable for improving SA production when sugars (instead of glycerol) are the source of carbon.


Saccharomyces cerevisiae , Succinic Acid , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Succinic Acid/metabolism , Glycerol/metabolism , Carbon Dioxide/metabolism , NAD/metabolism , Pyruvic Acid/metabolism , Mitochondrial Membranes/metabolism , Carbon/metabolism , Metabolic Engineering/methods
11.
Sci Rep ; 14(1): 8355, 2024 04 09.
Article En | MEDLINE | ID: mdl-38594438

Infections with dengue virus (DENV) remain a worldwide public health problem. A number of bona fide cellular targets of DENV have been identified including liver cells. Despite the many lines of evidence confirming the involvement of hepatocytes during DENV infection, only a few studies have used proteomic analysis to understand the modulation of the cellular proteome occurring upon DENV infection. We utilized a 2D-gel electrophoresis analysis to identify proteins that were differentially regulated by DENV 2 infection of liver (Hep3B) cells at 12 h post infection (hpi) and at 48 hpi. The analysis identifies 4 proteins differentially expressed at 12 hpi, and 14 differentially regulated at 48 hpi. One candidate protein identified as downregulated at 48 hpi in the proteomic analysis (GAPDH) was validated in western blotting in Hep3B cells, and subsequently in induced pluripotent stem cell (iPSC) derived human hepatocytes. The reduced expression of GAPDH was coupled with an increase in NADH, and a significantly reduced NAD + /NADH ratio, strongly suggesting that glycolysis is down regulated in response to DENV 2 infection. Metformin, a well characterized drug used in the treatment of diabetes mellitus, is an inhibitor of hepatic gluconeogenesis was shown to reduce the level of DENV 2 infection and new virus production. Collectively these results show that although glycolysis is reduced, glucose is still required, possibly for use by the pentose phosphate pathway to generate nucleosides required for viral replication.


Dengue Virus , Dengue , Humans , Dengue Virus/physiology , Proteomics , NAD/metabolism , Hepatocytes/metabolism , Glycolysis , Liver/metabolism , Virus Replication , Proteome/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
12.
Commun Biol ; 7(1): 428, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594590

NADH autofluorescence imaging is a promising approach for visualizing energy metabolism at the single-cell level. However, it is sensitive to the redox ratio and the total NAD(H) amount, which can change independently from each other, for example with aging. Here, we evaluate the potential of fluorescence lifetime imaging microscopy (FLIM) of NADH to differentiate between these modalities.We perform targeted modifications of the NAD(H) pool size and ratio in cells and mice and assess the impact on NADH FLIM. We show that NADH FLIM is sensitive to NAD(H) pool size, mimicking the effect of redox alterations. However, individual components of the fluorescence lifetime are differently impacted by redox versus pool size changes, allowing us to distinguish both modalities using only FLIM. Our results emphasize NADH FLIM's potential for evaluating cellular metabolism and relative NAD(H) levels with high spatial resolution, providing a crucial tool for our understanding of aging and metabolism.


Energy Metabolism , NAD , Mice , Animals , NAD/metabolism , Microscopy, Fluorescence , Oxidation-Reduction , Aging
13.
PLoS One ; 19(4): e0302251, 2024.
Article En | MEDLINE | ID: mdl-38635746

Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), leading to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by SARM1 is essential for the Wallerian degeneration process, but accumulating evidence suggest that other activities of SARM1, beyond the mere degradation of NAD+, may be necessary for programmed axonal death. In this study we show that the TIR domains of both human and fruit fly SARM1 produce 1''-2' and 1''-3' glycocyclic ADP-ribose (gcADPR) molecules as minor products. As previously reported, we observed that SARM1 TIR domains mostly convert NAD+ to ADPR (for human SARM1) or cADPR (in the case of SARM1 from Drosophila melanogaster). However, we now show that human and Drosophila SARM1 additionally convert ~0.1-0.5% of NAD+ into gcADPR molecules. We find that SARM1 TIR domains produce gcADPR molecules both when purified in vitro and when expressed in bacterial cells. Given that gcADPR is a second messenger involved in programmed cell death in bacteria and likely in plants, we propose that gcADPR may play a role in SARM1-induced programmed axonal death in animals.


NAD , Wallerian Degeneration , Animals , Humans , Wallerian Degeneration/metabolism , Wallerian Degeneration/pathology , NAD/metabolism , Drosophila melanogaster/metabolism , Axons/metabolism , Bacteria/metabolism , Adenosine Diphosphate Ribose/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism
14.
Biochemistry (Mosc) ; 89(2): 241-256, 2024 Feb.
Article En | MEDLINE | ID: mdl-38622093

Genes of putative reductases of α,ß-unsaturated carboxylic acids are abundant among anaerobic and facultatively anaerobic microorganisms, yet substrate specificity has been experimentally verified for few encoded proteins. Here, we co-produced in Escherichia coli a heterodimeric protein of the facultatively anaerobic marine bacterium Vibrio ruber (GenBank SJN56019 and SJN56021; annotated as NADPH azoreductase and urocanate reductase, respectively) with Vibrio cholerae flavin transferase. The isolated protein (named Crd) consists of the sjn56021-encoded subunit CrdB (NADH:flavin, FAD binding 2, and FMN bind domains) and an additional subunit CrdA (SJN56019, a single NADH:flavin domain) that interact via their NADH:flavin domains (Alphafold2 prediction). Each domain contains a flavin group (three FMNs and one FAD in total), one of the FMN groups being linked covalently by the flavin transferase. Crd readily reduces cinnamate, p-coumarate, caffeate, and ferulate under anaerobic conditions with NADH or methyl viologen as the electron donor, is moderately active against acrylate and practically inactive against urocanate and fumarate. Cinnamates induced Crd synthesis in V. ruber cells grown aerobically or anaerobically. The Crd-catalyzed reduction started by NADH demonstrated a time lag of several minutes, suggesting a redox regulation of the enzyme activity. The oxidized enzyme is inactive, which apparently prevents production of reactive oxygen species under aerobic conditions. Our findings identify Crd as a regulated NADH-dependent cinnamate reductase, apparently protecting V. ruber from (hydroxy)cinnamate poisoning.


Oxidoreductases , Vibrio , Oxidoreductases/metabolism , NAD/metabolism , Cinnamates , Oxidation-Reduction , Vibrio/genetics , Vibrio/metabolism , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , NADH Dehydrogenase/metabolism , Flavins/chemistry , Transferases , Flavin-Adenine Dinucleotide/metabolism
15.
Endocrinology ; 165(5)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38565429

NAD+ is one of the most important metabolites for cellular activities, and its biosynthesis mainly occurs through the salvage pathway using the nicotinamide phosphoribosyl transferase (NAMPT) enzyme. The main nicotinamide adenine dinucleotide (NAD) consumers, poly-ADP-ribose-polymerases and sirtuins enzymes, are heavily involved in DNA repair and chromatin remodeling. Since cancer cells shift their energy production pathway, NAD levels are significantly affected. NAD's roles in cell survival led to the use of NAD depletion in cancer therapies. NAMPT inhibition (alone or in combination with other cancer therapies, including endocrine therapy and chemotherapy) results in decreased cell viability and tumor burden for many cancer types. Many NAMPT inhibitors (NAMPTi) tested before were discontinued due to toxicity; however, a novel NAMPTi, KPT-9274, is a promising, low-toxicity option currently in clinical trials.


Neoplasms , Sirtuins , Humans , NAD/metabolism , Cytokines/metabolism , Neoplasms/drug therapy , DNA Repair , Sirtuins/genetics
16.
PLoS One ; 19(4): e0302130, 2024.
Article En | MEDLINE | ID: mdl-38625917

PARP inhibitors have been developed as anti-cancer agents based on synthetic lethality in homologous recombination deficient cancer cells. However, resistance to PARP inhibitors such as olaparib remains a problem in clinical use, and the mechanisms of resistance are not fully understood. To investigate mechanisms of PARP inhibitor resistance, we established a BRCA1 knockout clone derived from the pancreatic cancer MIA PaCa-2 cells, which we termed C1 cells, and subsequently isolated an olaparib-resistant C1/OLA cells. We then performed RNA-sequencing and pathway analysis on olaparib-treated C1 and C1/OLA cells. Our results revealed activation of cell signaling pathway related to NAD+ metabolism in the olaparib-resistant C1/OLA cells, with increased expression of genes encoding the NAD+ biosynthetic enzymes NAMPT and NMNAT2. Moreover, intracellular NAD+ levels were significantly higher in C1/OLA cells than in the non-olaparib-resistant C1 cells. Upregulation of intracellular NAD+ levels by the addition of nicotinamide also induced resistance to olaparib and talazoparib in C1 cells. Taken together, our findings suggest that upregulation of intracellular NAD+ is one of the factors underlying the acquisition of PARP inhibitor resistance.


Antineoplastic Agents , Pancreatic Neoplasms , Piperazines , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , NAD , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Phthalazines/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , BRCA1 Protein
17.
Elife ; 122024 Apr 03.
Article En | MEDLINE | ID: mdl-38567911

The antibiotic heliomycin (resistomycin), which is generated from Streptomyces resistomycificus, has multiple activities, including anticancer effects. Heliomycin was first described in the 1960s, but its clinical applications have been hindered by extremely low solubility. A series of 4-aminomethyl derivatives of heliomycin were synthesized to increase water solubility; studies showed that they had anti-proliferative effects, but the drug targets remained unknown. In this study, we conducted cellular thermal shift assays (CETSA) and molecular docking simulations to identify and validate that heliomycin and its water-soluble derivative, 4-(dimethylaminomethyl)heliomycin (designated compound 4-dmH) engaged and targeted with sirtuin-1 (SIRT1) in p53-functional SAS and p53-mutated HSC-3 oral cancer cells. We further addressed the cellular outcome of SIRT1 inhibition by these compounds and found that, in addition to SIRT1, the water-soluble 4-dmH preferentially targeted a tumor-associated NADH oxidase (tNOX, ENOX2). The direct binding of 4-dmH to tNOX decreased the oxidation of NADH to NAD+ which diminished NAD+-dependent SIRT1 deacetylase activity, ultimately inducing apoptosis and significant cytotoxicity in both cell types, as opposed to the parental heliomycin-induced autophagy. We also observed that tNOX and SIRT1 were both upregulated in tumor tissues of oral cancer patients compared to adjacent normal tissues, suggesting their clinical relevance. Finally, the better therapeutic efficacy of 4-dmH was confirmed in tumor-bearing mice, which showed greater tNOX and SIRT1 downregulation and tumor volume reduction when treated with 4-dmH compared to heliomycin. Taken together, our in vitro and in vivo findings suggest that the multifaceted properties of water-soluble 4-dmH enable it to offer superior antitumor value compared to parental heliomycin, and indicated that it functions through targeting the tNOX-NAD+-SIRT1 axis to induce apoptosis in oral cancer cells.


Mouth Neoplasms , Polycyclic Compounds , Sirtuin 1 , Humans , Animals , Mice , Sirtuin 1/metabolism , Cell Line, Tumor , NAD/metabolism , Tumor Suppressor Protein p53/metabolism , Molecular Docking Simulation , Apoptosis , Mouth Neoplasms/drug therapy
18.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G483-G494, 2024 May 01.
Article En | MEDLINE | ID: mdl-38573193

Fatty acid oxidation (FAO) releases the energy stored in fat to maintain basic biological processes. Dehydrogenation is a major way to oxidize fatty acids, which needs NAD+ to accept the released H+ from fatty acids and form NADH, which increases the ratio of NADH/NAD+ and consequently inhibits FAO leading to the deposition of fat in the liver, which is termed fatty liver or steatosis. Consumption of alcohol (ethanol) initiates simple steatosis that progresses to alcoholic steatohepatitis, which constitutes a spectrum of liver disorders called alcohol-associated liver disease (ALD). ALD is linked to ethanol metabolism. Ethanol is metabolized by alcohol dehydrogenase (ADH), microsomal ethanol oxidation system (MEOS), mainly cytochrome P450 2E1 (CYP2E1), and catalase. ADH also requires NAD+ to accept the released H+ from ethanol. Thus, ethanol metabolism by ADH leads to increased ratio of NADH/NAD+, which inhibits FAO and induces steatosis. CYP2E1 directly consumes reducing equivalent NADPH to oxidize ethanol, which generates reactive oxygen species (ROS) that lead to cellular injury. Catalase is mainly present in peroxisomes, where very long-chain fatty acids and branched-chain fatty acids are oxidized, and the resultant short-chain fatty acids will be further oxidized in mitochondria. Peroxisomal FAO generates hydrogen peroxide (H2O2), which is locally decomposed by catalase. When ethanol is present, catalase uses H2O2 to oxidize ethanol. In this review, we introduce FAO (including α-, ß-, and ω-oxidation) and ethanol metabolism (by ADH, CYP2E1, and catalase) followed by the interaction between FAO and ethanol metabolism in the liver and its pathophysiological significance.


Fatty Liver , Liver Diseases, Alcoholic , Humans , Catalase , NAD , Cytochrome P-450 CYP2E1 , Hydrogen Peroxide , Ethanol , Fatty Acids
19.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673866

In recent years, there has been increasing interest in utilizing Traditional Chinese Medicine principles and natural bioactive compounds to combat age-related ailments and enhance longevity. A Cordyceps sinensis mycelium hydroethanolic extract (CsEx), which was standardized in cordycepin and adenosine using UHPLC-DAD, was investigated for its adaptogenic properties using in vitro assays and a double-blind, placebo-controlled clinical trial involving 40 subjects. The CsEx demonstrated activity at a concentration of 0.0006%, significantly increasing sirtuin expression (SirT1: +33%, SirT3: +10%, SirT6: +72%, vs. CTR, p < 0.05) and NAD+ synthesis in HaCat cells (+20% vs. CTR, p < 0.001). Moreover, the CsEx boosted ATP production by 68% in skin cells, correlating with higher skin energy values (+52.0% at D28, p < 0.01) in the clinical trial. Additionally, CsEx notably reduced cytosolic reactive oxygen species (ROS) by 30% in HaCaT cells (p < 0.05) and enhanced collagen production both in vitro (+69% vs. CTR, p < 0.01) and in vivo (+10% vs. D0, p < 0.01), confirmed by ultrasound examination. Furthermore, CsEx's stimulation of fibroblasts, coupled with its antioxidant and energizing properties, led to a significant reduction in wrinkles by 28.0% (D28, p < 0.001). This study underscores Cordyceps sinensis hydroethanolic extract's potential in regulating skin cell energy metabolism and positively influencing the mechanisms associated with skin longevity control.


Cordyceps , NAD , Sirtuins , Skin , Cordyceps/chemistry , Cordyceps/metabolism , Humans , NAD/metabolism , Skin/metabolism , Skin/drug effects , Sirtuins/metabolism , Male , Reactive Oxygen Species/metabolism , Female , Cell Line , Longevity/drug effects , Adult , Skin Aging/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Middle Aged
20.
J Integr Neurosci ; 23(4): 85, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38682214

BACKGROUND: Alzheimer's disease (AD) is a condition that affects the nervous system and that requires considerably more in-depth study. Abnormal Nicotinamide Adenine Dinucleotide (NAD+) metabolism and disulfide levels have been demonstrated in AD. This study investigated novel hub genes for disulfide levels and NAD+ metabolism in relation to the diagnosis and therapy of AD. METHODS: Data from the gene expression omnibus (GEO) database were analyzed. Hub genes related to disulfide levels, NAD+ metabolism, and AD were identified from overlapping genes for differentially expressed genes (DEGs), genes in the NAD+ metabolism or disulfide gene sets, and module genes obtained by weighted gene co-expression network analysis (WGCNA). Pathway analysis of these hub genes was performed by Gene Set Enrichment Analysis (GSEA). A diagnostic model for AD was constructed based on the expression level of hub genes in brain samples. CIBERSORT was used to evaluate immune cell infiltration and immune factors correlating with hub gene expression. The DrugBank database was also used to identify drugs that target the hub genes. RESULTS: We identified 3 hub genes related to disulfide levels in AD and 9 related to NAD+ metabolism in AD. Pathway analysis indicated these 12 genes were correlated with AD. Stepwise regression analysis revealed the area under the curve (AUC) for the predictive model based on the expression of these 12 hub genes in brain tissue was 0.935, indicating good diagnostic performance. Additionally, analysis of immune cell infiltration showed the hub genes played an important role in AD immunity. Finally, 33 drugs targeting 10 hub genes were identified using the DrugBank database. Some of these have been clinically approved and may be useful for AD therapy. CONCLUSION: Hub genes related to disulfide levels and NAD+ metabolism are promising biomarkers for the diagnosis of AD. These genes may contribute to a better understanding of the pathogenesis of AD, as well as to improved drug therapy.


Alzheimer Disease , Disulfides , NAD , Alzheimer Disease/metabolism , Humans , NAD/metabolism , Disulfides/metabolism , Gene Regulatory Networks , Databases, Genetic
...